

Crane Calculation Template

Example 1 Ground Pressure Known (Find Area of Pad Size)

Outrigger Pont Loading (Based on 25tGround Bearing Pressure)

Weight of crane + weight of load Ground Bearing Pressure

Weight of Crane 72t

Weight of Counterweight 60t

132†

Weight of Load 11.4t

Hook Block / Tackle 0.7t

Fly Jib (If Fitted) 0.5t

 132×0.75 (Point load) + 11.4 + 0.7 + 0.5 = 111.6

111.6 / 25 (GBP) =4.464m²

√4.464 = 2.1128

Pad Size 2.1

Round Pad Size Up to 2.3

 $2.3 \times 2.3 = 5.29 \text{m}^2 (111.6 / 5.29 = 21.0 \text{t})$

Outrigger Point Load = 21t

Example 2 <u>Calculate from Pad Size</u>

Weight of crane + weight of load Area of Pad

Weight of crane: 50 Tonne Weight of load: 22 Tonne (Including Block / Tackle

Area of Outrigger Pad 1.44 m²

 $1.2 \times 1.2 = 1.44 \text{m}^2$

72 tonnes ÷ 1.44 X 75% X 10 (Converts into KiloNewtons)

= 37,500kN

Example 3 Ground Bearing Pressures Tables

1. Crane Weight

The maximum weight of the crane to be used 50,000kgs (worst case scenario)

2. Load

The maximum load to be lifted 22,000kgs + Load 1,500kgs

3. Outrigger Load

Point load = $(1+2) \times 100\%$ = $(50,000 + 23,500) \times 1 = 73,500$ kgs or 73.5t

4. Ground Type

Ground comes in granular and cohesive types.

Bearing Values BS: 8004

Non-Cohesive Soils							
Dense Gravel or Dense Sand and Gravel	>61.2 t/m²	>600 kN/m²					
Medium Dense Gravel, or Medium Dense Sand and Gravel	20.4—61.2 t/m²	200—600 kN/m²					
Loose Gravel, or Loose Sand and Gravel	<20.4 t/m²	<200kN/m²					
Compact Sand	>30.6 t/m²	>300 kN/m²					
Medium Dense Sand	10.2—30.6 t/m²	100-300 kN/m ²					
Loose Sand *	10.2 t/m²	<100 kN/m²					
* (Depends on degree of looseness)							

Cohesive Soils							
Very Stiff Boulder Clays and Hard Clays	>61.2 t/m²	300-600 kN/m²					
Stiff Clays	15.3—30.6 t/m²	150—300 kN/m²					
Firm Clay	7.6—15.3 t/m²	75—150kN/m²					
Soft Clays and Silts	<7.6 t/m²	<75 kN/m²					
Very Soft Clay	Not Applicable	Not Applicable					
Peat	Not Applicable	Not Applicable					

5. Mat size

Mat size deducted from point load in 3 (in kNs) / (Soil type value 2) $73500 \times 9.81 = 721,035$ kNs 721.0kNs / 300KN/m² = 2.40 m²

= 1.6m X 1.6m minimum

A. Soil is compact ground (gravel 100mm in depth) covered in tar. Two outriggers will be placed here. The other two will be placed on medium dense gravel [Dense gravel has a bearing value of >600kNm² medium dense gravel <200 - 600kNm²] Area has transport trailers carrying ISO containers so a pessimistic ground bearing value of 300kNm has been selected.

Example 4 Outrigger Loading Template

Mat Area Calculation Template

Stage 1: <u>Gross Load Calculation</u>

Net Load	t
Lifting at height: Load x 1.2 (SF) t	t
+ Accessories	t
Hook Block	t
+ Stored Fly Jib	t
Gross Load =	t

Stage 2: <u>Crane Selection</u>
<u>Template</u>

Crane Selected and Cap	acity:				
Counterweight / Ballast	Used				t
Boom Length Required					m
Length & Angle if Fly Jib	Used			m	deg
Maximum Radius From	Load Chart		m		SWL
Minimum Radius Requir	red				m
SWL at Radius Used					t
Outrigger Spread		mm			mm

Stage 3: <u>Crane Utilization</u>

Gross Load X 100 Divided by SWL @ the Radius Worked:					
Workings		Crane Utilization	%		

Stage 4: <u>Crane Matt Calculation</u>

12t Per Axle						
Weight of Crane					t	
Counterweight / Ballast					t	
	=					
X0.75% (Point Loading)					t	
+ Gross Load					t	
То	tal				t	
÷ by Ground Bearing Allowance			25		kNs	
Area of Mat Equals	=				m²	
	٧		Х		m	
Total all up Weight Dived by the A	rea d	of Mat Use	t			
Point Load					t	

Stage 5: <u>Bearing Pressure</u>

Actual Bearing Pressure Under Mat (Maximum Point Load)					
New Mat Size Area (Length x Breadth)					
Total all up Weight Dived by the Area of Mat Used					
Or m Diameter if Circular					
	Resulting Loading		kNs		

Converting Square to Round Pads

1.6 X 1.6 = 2.56m

2.56 ÷3.14 = 0.815 √ 0.815 = .903 (Radius) X 2 = 1.8m (Dia)

VOIL

1.6 m

Crane Utilisation: Load X 100 ÷ Radius

■ 1	2 t	■ 3.5 m*		⊕ 360°	Q			EN 13000
A	10,3 m	14,0 m	17,7 m	21,3 m	25,0 m	28,7 m	32,4 m	A
m								m
3	41,90	-	-	-	-	-	-	3
3,5	37,45	-	-	-	-	-	-	3,5
4	30,70	29,05	27,50	-	-	-	-	4
4,5	25,95	24,60	23,55	-	-	-	-	4,5
5	22,35	21,20	20,35	20,00	14,50		-	5
6	17,20	18,60	15,70	15,85	13,30	9,60	-	6
7	13,85	14,05	12,55	12,85	12,80	8,50	6,00	7
8	11,30	11,70	10,15	10,55	1065	8,00	5,70	8
9	-	9,90	9,00	8,85	9,05	7,50	0,+0	9
10	-	8,45	8,20	7,40	7,70	7,00	5.00	10
11	-	7,30	7,50	6,35	6,65	6.65	4.70	11
12	-	6,45	6,45	5,50	5,70	5,85	4,50	12
13	-	-	5,70	4,75	5,05	0,10	4,00	13
14	-	-	5,15	4,30	4,30	4,50	4,00	14

Crane Configuration - Radius: 12m - Boom length: 32.4m (Crane can lift 4.5 tons)

Crane Utilisation

Load 4t \times 100 ÷ 4.5 = 88.8% Crane Utilization too high for hazardous area (Chemical Plant)

You would need to Reduce Boom Length or Reduce Crane Radius

Load 4t (@10m) \times 100 ÷ 5t = 80.0% Crane Utilization Good

RADIUS: Straight Line Lifts

All Operators must fully understand Where & How to position their crane safely

To many accidents are caused by the operator not positioning the crane correctly

Lift: You have to position a load centred on the roof of a building

The easiest lift you can do is a straight line lift (from point A to point B)

Stage 1: Position crane (centre of slew ring) on the X directly in front of the drop point X B Note: Do not position the crane to close or to far away from building (Safe distance)

Step 2: Find centre point of building and pace distance back to centre of slew ring (in metres)

Step 3: You can now check cranes load charts to see if you can lift the load at that radius

RADIUS: Angled Lifts

Angled lifts need more planning

<u>Lift</u>: You have to position a load on the corner of a building

No lifting within shaded area

Stage 1: We need to measure from B to A X then from A X to X B

Step 2: We now have 2 known distances 36 and 13

Step 3: If we times 36 x 36 = 1296 and times 13 x 13 = 169. Add both numbers together 1296 + 169 = 1465 and square root $\sqrt{1465}$ = 38.2

Radius from point A – B is 38.2 metres

Wind Resistance Coefficient (See BS7121 Page 78)

Wind Pressure on Load

Check Wind Speed on Load Charts
(Most Cranes have a Maximum Wind Speed of 9.8 M/P/S)

Example Only

Mobile cranes are designed with a standard drag factor of 1.2 and a wind

area/weight of 1.2 m²/tonne.

This means that certain types of loads will produce higher side loads on the crane than it is designed to take

Load	Drag Factor cw
Standard values from EN13000	1.2
12m Container Cabin	1.55
System Shutter Panel 3m high x 1.9m wide	1.4
Wind Turbine Rotor	1.5 to 1.8

Sail Area of Load

 $2.5 \times 8 = 20m^2$ (Sail Area)

Wind Resistance Coefficient

$$V^{Max} = V^{Chart} \times \sqrt{\frac{1.2 \times M}{A^p \times C^w}}$$

 V^{Max} = Maximum Permitted Wind Speed (For New Load)

V^{Chart} = Maximum Wind Speed of Crane (Boom Configuration)

1.2 = Manufacture Test Standards (EN 13000 - 2010 / ISO 4306-2:2012)

M = Maximum Gross Weight

 A^p = Sail Area of Load

 C^{W} = Resistance Coefficient (1.4) (Example)

 $1.2 \times 15.5 = 18.6$ (Manufacture Test Standards) X (Load Weight)

 $20 \times 1.4 = 28$ (wind load Area)

 $18.6 \div 28 = 0.6643$

 $\sqrt{0.6643} = 0.81504$

 $0.81504 \times 12.8 = 10.43$

 $2.5 \times 8 = 20m^2$

Slinging: 4 Leg 60° Angle 60° Angle 11.1m 11.1m 5m 5_m 11.1m 12m Dia 11.1m 5m 10m $12 \times 75\% = 9$ $9 \times 3.14 = 28.26$ m $5 \times 5 =$ 25 28.26 + 10 = 38.26m $10 \times 10 =$ 100 Multiply 1.4 to load weight 125 $\sqrt{125}$ = 11.1m slings to be used. for SWL of sling Multiply 2.1 to Load weight to get SWL of sling Magic Sevens 90° $1 \times 7 = 7$ $2 \times 7 = 1.4$ $3 \times 7 = 2.1$ (4 Legs same 16 ton as 3 legs) X Mode Factor to Load

To calculate what SWL is needed for slings Multiply 1.4 to load weight 16t $1.4 \times 16 = 22.4$ tonne slings for lift